
BDDS Python Tutorial;

subsetting large datasets and

merging metadata
This is a Bulk Data Download Services (BDDS) tutorial providing a walkthrough on how to

process large CSV files using the Python coding language (with the Pandas module). We

selected Python for it's popularity, open source access, relevance to data science and

accessibility for beginners. The Pandas module was selected because it is fast and has low

memory usage. The code only takes seconds to run (depending on the system) and uses

around 800 MB of memory including Python's overhead (500MB).

We assume that you have some basic understanding of coding or scripting in order to adapt the

code to your needs, but we believe this tutorial is within the reach of novice coders. It is built to

process any of the BDDS data packages with as few modifications as possible.

Context
We wanted to address users' feedback concerning issues when opening the larger datasets

in Excel e.g. Other Policy-Relevant Indicators (OPRI) containing more than 2.7 million

rows. Figure 1 shows the warning message popping-up when a CSV is partially loaded due to its

size exceeding Excel's limit, in this case, exceeding the maximum number of rows.

Figure 1 excel warning message: file not loaded completely.

The BDDS is meant to be accessed programmatically either with a statistical package (R, STATA,

SAS, SPSS, etc.) or with a coding language. Although it is possible to load it initially in Excel with

some manual workaround, we strongly discourage this practice to prevent human errors.

Moreover, each BDDS package provides data point level metadata, and labels in separate CSV

files. Linking these files with the core datasets requires efficiency and power that goes beyond

Excel's standard capabilities.

Objective
This tutorial fulfils two main objectives. First, to process a large CSV in a programmatic way.

Second, to demonstrate how the country/indicator labels and metadata are linked and merged

to the data.

Specifically, we will process the Other Policy-Relevant Indicators BDDS files using

the Pandas module in Python, providing a walkthrough with the following steps:

1. Read (load) the full CSV file in memory;

2. Create a subset based on lists of countries, indicators and years;

3. Merge indicator and country labels to the subset (using Pandas module);

4. Merge metadata to a data subset;

5. Write the data subset back to CSV.

Getting started

Download the Python code
Start by downloading the tutorial Python code package (the link will start the download).

Download the BDDS data
You will also need the Other Policy-Relevant Indicators (OPRI) data package (available on the
UIS BDDS page under ‘Education’).

Unzip the Python code and the data files and take note of the path of the folder where those

documents are saved, it will be required as an input to the code during this walkthrough.

Install the Python software
There are many ways to get Python, but we recommend the convenience of Anaconda. This

software package includes multiple data science tools, such as Python and dedicated Python

Integrated Developer Environments (IDE) like Spyder and Jupyter Notebook. For this

demonstration, we will use the Spyder IDE (within Anaconda) for running the code, looking at

output tables, etc.

Go to the Anaconda download page and choose a download package for your system at the

bottom of the page.

https://apimgmtstzgjpfeq2u763lag.blob.core.windows.net/content/MediaLibrary/BDDS_Code/BDDS_Python.zip
https://apimgmtstzgjpfeq2u763lag.blob.core.windows.net/content/MediaLibrary/bdds/OPRI.zip
https://www.anaconda.com/products/individual

Opening the code
Install Anaconda → Open Anaconda → Click on the Install button in the Spyder section (Figure

2, the button will change from "Install" to "Launch") → Launch Spyder after it is installed

Figure 2 anaconda interface's Home page

Within Spyder: Go to File menu (Figure 3) → Click Open...→ Open the BDDS code from its saved

location

Figure 3 opening a Python file in Spyder IDE

This will load the Python code in Spyder. Nothing is executed at this point.

Executing the code
In the following section, we will look at each block of code in detail. The code contains most of

the necessary comments to understand how it works but we will go through each steps adding

some colour to those comments.

The code uses two modules (Figure 4) that include built-in functions for data manipulation.

Figure 4 modules for data manipulation

• Pandas is a fast, powerful, flexible and easy to use open-source data analysis and

manipulation tool with Python

• Numpy a fundamental package for scientific computing with Python

Specifying file path and files names

Figure 5 file path and loading CSV data in memory

Figure 5 shows the path where the CSV files are saved on the computer.

Change the path to the location on your computer where the BDDS files are saved

This tutorial only uses the following CSV:

• OPRI_DATA_NATIONAL.csv - the core dataset with country data;

• OPRI_METADATA.csv - the metadata table related to the data points in the core dataset;

• OPRI_COUNTRY.csv - the table with country labels and;

• OPRI_LABEL.csv - the table with indicator labels.

Figure 6 loading CSV files to memory

The code in Figure 6 will load the CSV files to memory in a Pandas DataFrame reproducing the

original file's structure.

Modify the file names in the code when you want to load other datasets

The "OPRI_DATA_NATIONAL.csv" saved in the eduDataSet variable will look like the table in

Figure 7.

Figure 7 an example of a Pandas' DataFrame

Run the code from the beginning to the “Load CSV to memory” section (included) by

selecting the lines and then pressing F9.

You can now see the CSV loaded in the Variable explorer tab (Figure 8) within the Spyder IDE.

Double click on the countryLabels variable and the DataFrame it contains will pop-up in a new

window.

Note that double-clicking on large DataFrame will take a long time to load e.g.

the eduDataSet containing 2.7 million rows.

Figure 8 opening a variable containing a DataFrame in the Variable Explorer

Subsetting the data file
The second step is to extract a subset from a DataFrame based on lists of countries, years and

indicators.

Figure 9 extract and sort lists of unique values for years, countries and indicators

The first lines (Figure 9) sort and save lists of the unique values for countries, years and

indicators found in eduDataset. These lists will define the default parameters in the function

named subsetData Figure 10.

Figure 10 subset function

The subsetData function (Figure 10) takes in four arguments: dataSet, yearList, countryList and

indicatorList. Left at their default parameters, the subset will contain the last four years of data

for all countries and all indicators.

The full dataset OPRI_DATA_NATIONAL.csv starts with more than 2.7 million rows. The default

parameters output a DataFrame containing around 250K rows providing a subset that fits

within an Excel sheet.

Both the core data and the metadata should be subsetted to speed up the merging process

although the speed gain will be marginal on smaller subsets.

An example will be provided showing how to change these parameters to get a smaller (or

larger) subset. Before running these examples, we will define another function for merging the

metadata to the subset.

Merging the metadata to the data subset

Figure 11 merging the metadata function

The addMetadata function (Figure 11) will take a dataset and merge it with its metadata.

The function takes in three arguments: dataSub, metadataSub and metadataType. Left at its

default 3rd parameter, the function will add a column holding the data source to the subset.

The metadata is data point specific and the function will try matching a data point with the

same YEAR/COUNTRY_ID/INDICATOR_ID combination within the metadata file.

Any data point can have zero, one or multiple metadata values associated with it. In the OPRI

dataset, there are two types of metadata at the time of writing so a single data point could have

a source or an under coverage entry associated with it. As such, it is important to run this

function multiple time to get all the metadata types required for your needs. This function

could also be modified to merge all metadata in one run.

Furthermore, a single datapoint could have multiple entries for the same type of metadata. This

is also taken into account and when such a case occurs, the function will combine the entries

within a single cell and each entries will be separated by the "|" symbol.

Run the code sections from "Creating subsets of the data" to "Merging metadata and

data subsets" (included) by selecting the lines and then pressing F9. This will save the

new functions to memory.

Example subsetting and merging the metadata

to the subset
So far, we have constructed two functions that allow to subset the core data set and then

match the metadata to each data point of the subset.

The next blocks of code provide examples running these two functions.

Example 1, running the subsetData function with the default

parameters

Figure 12 executing the subset and metadata functions using the default parameters

In this example (Figure 12), we only need to specify the dataset to be subsetted since we will

otherwise run the subsetData function on its default parameters. This means we will extract

the last 4 years of data, all indicators and all countries for both the core data set and the

metadata set.

Next, we use the addMetadata function specifying the data subset and the metadata subset as

the first two parameters. For the purpose of this example, we do not specify the third

parameter since we will merge the data with the default metadata type, the source of the data.

RUN "Example 1" (Figure 12) by selecting the lines and then pressing F9.

This will save the DataFrames to variables (defaultDataSubset, defaultMetadataSubset,

defaultSubsetWithSource) which can be visualized in the variable explorer tab.

Example 2, running the subsetData function with custom

parameters

Figure 13 executing the subset and metadata functions using custom parameters

Figure 13 shows how the function works with all the parameters and the parameters' inputs

explicitly stated.

First, custom lists of years, countries and indicators are specified and saved in variables

(yearsSubset, countrySubset and indicSubset). These variables are then passed in

the subsetData function as the second, third and fourth parameters respectively.

Once the dataset and the metadata set have been subsetted, the code merges the metadata

and data subsets a first time with the addMetadata function. The third parameters is a string

specifying ‘Under Coverage: Students or individuals’ as the type of metadata merged to the

subset.

To further the example, the addMetadata is then used a second time to add the default

metadata type (data source).

The final output is a subset with extra columns with both the source and the under-coverage

metadata.

Run "Example 2" (Figure 13) section by selecting the lines and then pressing F9.

This will save the DataFrames to variables.

Adding labels

Figure 14 adding labels function with an example

Before converting back the subset with metadata to CSV, the label for the country and indicator

can be attached to the subset. This function will merge the labels from the label dataset to the

subset.

The function (Figure 14) takes in three arguments and has no default parameters. The first and

second arguments are for specifying the DataFrames for the subset and label tables. The third

argument indicates the key on which to merge the DataFrames.

To get both countries and indicators labels you will need to run the function twice.

The output is a dataset with extra columns with those labels.

Run the "Adding labels" section (function and example) by selecting the lines and then

pressing F9.

This will save the function in memory and run the examples for merging labels.

The function is run twice to include both country and indicator labels. You can now visualize the

DataFrame with labels in the Variable Explorer.

Exporting subset to CSV

Figure 15 exporting the final subset to CSV

Lastly, we export the subset back to CSV (Figure 15). There are many options for what we could

do with the subset but, for the sake of this tutorial, we assume that the user will want to do

some analysis in Excel.

Modify the file name in the code to a name of your choice and run the last line of code

to export the final subset to CSV.

You now have a subset with the metadata and labels included. The subset is saved in the folder

specified in the "Input files" section at the beginning of the code.

